

Greening the Black: Plants in Space

Gioia Massa

NASA, Kennedy Space Center, FL, USA

My Journey

Why grow plants in space?

- Food
- Psychological well being
- Atmosphere
- Water

The Space Crop Production Vision

Ensure Food System Security on Long Duration Missions Beyond LEO

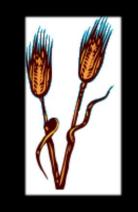
Near-Term Goal
Nutrient Supplementation of Prepackaged Food

Long-Term Goal
Caloric Replacement to Facilitate Earth Independence

Space Crop Production Candidates

Salad
Leafy Greens
Tomato
Pepper
Radish
Strawberry
Green Onion
Pea
Carrot

Lettuce, Chinese cabbage, Swiss chard, Mizuna, Spinach



Herbs
Basil
Mint
Chives
Dill

Staple CropsWhite Potato
Sweet Potato

MINIMAL PREPARATION / COOKING

SIGNIFICANT PREPARATION / COOKING

CONSUMED
FRESH WITHOUT
PROCESSING

Space Crop Production Challenges

Deep Space

- Microgravity
- Fluid movement
- No convection

- Water Surface Recycling
- Radiation Dust
- Pressure
 Partial gravity
- Micrometeorites
- Plant Size
- High CO₂
- Food Safety & Microbiome
- Nutrient output
- Sustainability
- Abiotic stresses
- Vehicle resources
- Crew time
- Waste
- Productivity
- Stress tolerance
- Environmental optimization
- Crop scheduling

Crop

Space Crop Production Roadmap For Exploration

Proving Ground to study the effect of deep space

radiation on pick and eat crops in μq

Operational µg Food Production capability for pick and eat crops to supplement crew diet

MARS TRANSIT (Crop Production)

Scale: One to Two EXPRESS Racks (8-16 Lockers)

SS (Plant Research and H/W Technology)

Identify challenges and solutions for growing pick and eat crops in µg to support crew nutrition

Scale: Single Locker to EXPRESS Rack (8 Lockers)

Notional Commercial

Develop and deploy operational partial gravity systems for both nutritional support and caloric replacement as both a source of food for long duration lunar missions and as a demonstration for Mars

Scale: Single Locker to Module

MARTIAN SURFACE (Production)

Environment 1g Gravity

Leverage Lunar Surface experience in Food Production systems to extend Earth *Independence for Mars missions*

Scale: Single Locker to Module

Ground (Plant Research and H/W Technology)

Develop space crop production concepts and strategies in support of destinations along the exploration roadmap

Scale: Single Locker to Module

Current NASA Large Plant Research Capabilities On

VEG-01B Harvest (August 2015)

Astronaut Comments

Scott Kelly

- the logistical complexity of having people live and work in space for long periods
- the supply chain that is required
- For Mars, need a space craft that is more selfsustainable with regards to its food supply

Kjell Lindgren

- benefit of eating the fresh food
- contribution that plants have to the ISS ecosystem
- psychological benefit it's really fun to see green growing things in the sterile environment of the ISS

Red Lettuce Cut-and-Come-Again

VEG-03 New Crops on Orbit

- Red Russian Kale
- *Dragoon Lettuce
- Wasabi Mustard
- *Extra Dwarf Pak Choy
- Amara Mustard

Grown in different combinations with Amara Mustard and Extra Dwarf Pak Choi harvested recently on ISS!

*= Student Selected Crops!

VEG-04

Research to study the impacts of Red: Blue: Green light ratios on Mizuna crop growth, nutrient composition, organoleptic appeal and microbial food safety with additional assessments of crew behavioral health.

Collaboration between KSC, JSC, Purdue University and SNC-ORBITEC

VEG-04 Crew Engagement

Plant Aromas Also Enhance Astronaut Experiences

Thank you!

